DS1920
STRONG PULLUP FOR SUPPLYING DS1920 DURING TEMPERATURE
CONVERSION Figure 2
OPERATION—MEASURING TEMPERATURE
The DS1920 measures temperatures through the use of an on-board proprietary temperature measurement
technique. A block diagram of the temperature measurement circuitry is shown in Figure 3.
The DS1920 measures temperature by counting the number of clock cycles that an oscillator with a low
temperature coefficient goes through during a gate period determined by a high temperature coefficient
oscillator. The counter is preset with a base count that corresponds to -55°C. If the counter reaches 0
before the gate period is over, the temperature register, which is also preset to the -55°C value, is
incremented, indicating that the temperature is higher than -55°C.
At the same time, the counter is then preset with a value determined by the slope accumulator circuitry.
The counter is then clocked again until it reaches 0. If the gate period is still not finished, then this
process repeats.
The slope accumulator compensates for the nonlinear behavior of the oscillators over temperature,
yielding a high-resolution temperature measurement. This is done by changing the number of counts
necessary for the counter to go through for each incremental degree in temperature. To obtain the desired
resolution, therefore, both the value of the counter and the number of counts per degree C (the value of
the slope accumulator) at a given temperature must be known.
Internally, this calculation is done inside the DS1920 to provide 0.5°C resolution. The temperature
reading is provided in a 16-bit, sign-extended two’s complement reading. Table 1 describes the exact
relationship of output data to measured temperature. The data is transmitted serially over the 1-Wire
interface. The DS1920 can measure temperature over the range of -55°C to +100°C in 0.5°C increments.
For Fahrenheit usage, a lookup table or conversion factor must be used.
Note that temperature is represented in the DS1920 in terms of a 1/2°C LSB, yielding the following 9-bit
format:
MSB
LSB
1
1
1
0
0
1
1
1
0
= -25°C
4 of 22
相关PDF资料
DS1921G-F5# IBUTTON THERMOCHRON F5
DS1921H-F5# IBUTTON THERMOCHRON F5
DS1921K# KIT IBUTTON THERMOCHRON
DS1922E-F5# IBUTTON TEMP LOGGER 4KBit F5
DS1922L-F5# IBUTTON TEMP LOGGER
DS1923-F5# IBUTTON TEMP/HUMIDITY LOGGER F5
DS1961S-F3# IBUTTON EEPROM 1KBit F3
DS1963S-F5+ IBUTTON MONETARY SHA-1
相关代理商/技术参数
DS1921 制造商:DALLAS 制造商全称:Dallas Semiconductor 功能描述:High-Resolution Thermochron iButton
DS1921G 制造商:未知厂家 制造商全称:未知厂家 功能描述:Thermochron iButton
DS1921G_11 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Logs Up to 2048 Consecutive Temperature Thermochron iButton
DS1921G_1109 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Thermochron iButton
DS1921G_12 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Thermochron iButton
DS1921G-F5 功能描述:iButton RoHS:否 存储类型:SRAM 存储容量:512 B 组织: 工作电源电压:3 V to 5.25 V 接口类型:1-Wire 最大工作温度:+ 85 C 尺寸:17.35 mm x 5.89 mm 封装 / 箱体:F5 MicroCan 制造商:Maxim Integrated
DS1921G-F5# 功能描述:iButton Thermochron iButton RoHS:否 存储类型:SRAM 存储容量:512 B 组织: 工作电源电压:3 V to 5.25 V 接口类型:1-Wire 最大工作温度:+ 85 C 尺寸:17.35 mm x 5.89 mm 封装 / 箱体:F5 MicroCan 制造商:Maxim Integrated
DS1921G-F5#W 功能描述:iButton RoHS:否 存储类型:SRAM 存储容量:512 B 组织: 工作电源电压:3 V to 5.25 V 接口类型:1-Wire 最大工作温度:+ 85 C 尺寸:17.35 mm x 5.89 mm 封装 / 箱体:F5 MicroCan 制造商:Maxim Integrated